

OFFICE OF THE PRINCIPAL, S.K.C.G. (AUTONOMOUS) COLLEGE, PARALAKHEMUNDI, GAJAPATI, ODISHA-761200

Web: https://www.skcgparala.ac.in :: E-mail ID: principal@skcgparala.ac.in :: Phone: 06815-223823

PROGRAMME OUTCOME

DEPARTMENT OF PHYSICS

Objectives	Programme Outcome
To enable students gain requisite	On graduation, the student will have the following
knowledge and acquire ability to	abilities:
apply them as and when required	a) A fundamental as well as a higher level of
	understanding, comprehension, analysis and
	articulation of concepts studied.
	b) Will have the ability to identify problems/issues and
	come up with creative solutions.

	Course Outcome	Papers	Learning Outcome&Attain ment Level
CO 1	To learn about the functions and their properties like limit, continuity, differentiation, integration, plotting, approximations, Partial derivatives, exact and inexact differentials and apply them to solve physics problems.		
CO 2	To learns and solve first and second order differential equations & nature of solution for different problems.		
CO 3	To develop a strong foundational knowledge on Vectors and their basic properties, gradient, divergence, curl, line, surface, volume integrals of scalar & vectors and their applications. To solve these problems in curvilinear, rectangular, spherical polar and cylindrical coordinate system. To understand the mechanics of object and its	Core Course Paper I & II GE 1	SGPA on basis of Credits earned from MSE (Mid Semester Examinations or CIA-Continuous
	properties for rotational dynamics, non-inertial systems, Elastic properties of mater, fluid motion and viscosity and to solve the problems.		Internal Assessments) & ESE (End
CO 5	To describe gravitation, central force motions, oscillations and special theory of relativity and to solve the problems.		Semester Examinations)
CO 6	To understand the mechanics of object and its properties for rotational dynamics, non-inertial systems, Elastic properties of mater, fluid motion and viscosity, Gravitation, central force motions, oscillations and special theory of relativity and to solve the problems.		

SEMESTER - I

SEMESTER - II

	Course Outcome	Papers	Learning Outcome & Attainment Level
CO 1	To learn about Electric field, Magnetic field and their relation with potential of different regular objects, different laws associated with it and their application for solving practical problems.		
	properties of matter, Electromagnetic inductions, Maxwell's equation, electrical AC circuits & application, Network theorems & their application to AC & DC circuits.		
CO 3	To learn about the geometrical nature of light and its properties like reflection, refraction, dispersion, matrix formulation of light and their application to thick lens, thin lens, eyepieces etc.	Core Course Paper III & IV GE - II	SGPA on basis of Credits earned from MSE (Mid Semester Examinations or CIA-Continuous Internal Assessments) & ESE (End
CO 4	To describe EM wave nature of light and its properties like interference, diffraction and apply them to study about different optical devices like single slit, double slit, bi-prism, gratings, zone plates, thin films, interferometer, telescopes, straight edges etc.		Semester Examinations)
CO 5	To be able to Summarize all the electric, magnetic, dielectric concepts of matter and properties of light illustrated through the topics covered.		
CO 6	To acquire representation abilities on the above topics in terms of writing and demonstration.		

SEMESTER - III

	Course Outcome	Papers	Learning Outcome & Attainment Level
CO 1 CO 2	To familiarize students with functions, special functions, series as well as methods to solve differential equations and their advanced mathematical operations To inculcate the thinking ability in students for the real-time usefulness of mathematics in Physics	Core Course	SGPA on basis of Credits earned from MSE (Mid Semester Examinations or CIA-Continuous Internal
CO 3	To acquire knowledge of the thermodynamic phenomena and related theoretical approach to understand the static and dynamic behavior of ideal and real gases To introduce students the basics of principle	Paper V,VI &VII GE -3A	Assessments) & ESE (End Semester Examinations)

	and operations of semiconductor devices and
	their real-time applications.
CO 5	To enable students to use their theoretical
	understanding by observing and obtaining
	different parameters through experiments and
	learning Sci-Lab programming to solve
	differential equations.

SEMESTER IV

	Course Outcome	Papers	Learning Outcome & Attainment Level
CO 1	To study and understand the integral transforms their properties and applications with a brief revision of complex numbers and their operations.		
CO 2	To introduce the students with the evolution of atomic model and relevant experimental evidences that helped these developments.		
CO 3	To motivate students for the courses of quantum mechanics by giving them the initial required introduction of duality of particles.	Core Course	SGPA on basis of Credits earned from MSE (Mid
CO 4	To help the student understand the basic terminologies related to nucleus and their properties as well as to give an idea of radioactivity and the operations of nuclear reactors.	Paper VIII, IX & X GE -III	Semester Examinations or CIA-Continuous Internal Assessments) & ESE (End Semester Examinations)
CO 5	To enable students to use their theoretical understanding by observing and obtaining different parameters through experiments and learning SciLab programming to solve differential equations.		
CO 6	Come up with comprehensive notes that students can articulate, express, write in any verbal or written assessment processes on all topics mentioned above.		

SEMESTER V

	Course Outcome	Papers	Learning Outcome & Attainment Level
CO 1	To formulate Schrodinger equation, explain probabilistic interpretation of wave function, identify acceptable wave function, construct wave packet using the concept of superposition principle.		
CO 2	To describe operators, Eigen values, Eigen functions. To apply Schrödinger Equation to		

f Credits
SE (Mid
ations or
Internal
ESE (End
nations)

SEMESTER VI

	Course Outcome	Papers	Learning Outcome & Attainment Level
CO 1	To build concept of micro and macro state, ensemble, distribution law, partition function and to establish correlation between thermodynamics and statistical mechanics.		SGPA on the basis of
CO 2	To understand quantum statistics and to explain the various laws on thermal radiation.		Credits earned from MSE (Mid Semester
CO 3	To explain the concept of electromagnetic field. To derive wave equation in unbounded media and bounded media.	Core Course Paper XIII & XIV	Examinations) or CIA (Continuous Internal Assessments) & ESE (End
CO 4	To gain basic knowledge on polarization. To demonstrate various types of polarizations. To explain rotatory polarization and phase retardation plates.	DSE-III &DSE IV	Semester Examinations) The final CGPA attained at the Final Semester is
CO 5	To acquire basic knowledge of nanomaterials and their band structure, length scale. To apply quantum mechanics in nanoscale systems.		calculated taking all SGPAs of all semester and grading is done to award
CO 6	To describe different methods of synthesis of nanomaterial, their characterization and hence application. To develop research aptitude.		1 st /2 nd Class Honors with Distinction.