

OFFICE OF THE PRINCIPAL, S.K.C.G. (AUTONOMOUS) COLLEGE, PARALAKHEMUNDI, GAJAPATI, ODISHA-761200

Web: https://www.skcgparala.ac.in :: E-mail ID: principal@skcgparala.ac.in :: Phone: 06815-223823

PROGRAMME OUTCOME

Department of CHEMISTRY (UG)

Objectives	Programme Outcome
To enable students gain requisite	On graduation, the student will have the
knowledge and acquire ability to	following abilities:
apply them as and when required	 a) A fundamental as well as a higher level of understanding, comprehension, analysis and articulation of concepts studied. b) Will have the ability to identify problems/issues and come up with creative solutions.

SEMESTER - I

	COURSE OUTCOME	Papers	Learning Outcome& ATTAINMENT Level
CO 1	Describe and define the structure of atom,Schrodinger's wave equation, arrangement of electrons in an atom, radial and angular wave function.	Core Course	SGPA on basis of Credits earned from MSE (Mid Semester Examinations or
CO 2	Detailed discussion of the periodic properties in a periodic table and its variation in a group and in a period.	Paper I & II GE 1A	CIA-Continuous Internal Assessments) & ESE (End Semester
CO 3	Develop a fundamental concept on types of chemical bond forms during compound formation. Which Further developed by VSEPR theory the effect of lone pairs and bond pairs that affects the structure of the molecule.		Examinations)
CO 4	Develop a strong foundational knowledge on kinetic theory of gas, deviation from idea gas behavior, properties of liquids and the different types of solids.		
CO 5	Have knowledge on electrolytes its types, effects of P ^H of solution due to hydrolysis of salts and application of buffer solution along with the role of common ion effect during qualitative analysis of salts.		
CO 6	A student should be able to demonstrate/write comprehensively on any of the topics covered.		

SEMESTER - II

	COURSE OUTCOME	Papers	LO & ATTAINMENT Level
CO 1	Knowledge on basic concepts of organic	Core Course	SGPA on basis of Credits
	chemistry, types of electronic displacement	Paper III &	earned from MSE (Mid
	and different types of organic reactions	IV GE -2A	Semester Examinations or
	along with its mechanisms.		CIA-Continuous Internal
			Assessments) & ESE (End
CO 2	Ideas on chemistry of alkanes , different		Semester Examinations)
	isomerisms and configurations on optical		
	isomers.		
CO 3	Illustrate the chemistry of alkenes along		
	with its reaction mechanisms. With the help		
	of the above clearly explains the		
	electrophilic addition reaction in symmetry		
	and asymmetric alkenes.		
CO 4	Acquires knowledge on aromatic		
	compounds and electrophilic aromatic		
	substitution with its mechanism.		
CO 5	Complete description of thermodynamics,		
	its different laws and parameters.		
CO 6	Acquires abilities on the above topics in		
	writing, discuss or write mechanisms, topic		
	specific notes		

SEMESTER - III

	COURSE OUTCOME	PAPERS	LO & ATTAINMENT
			Level
CO 1	Define and elaborate description about metallurgy,	Core Course	SGPA on basis of
	Elliangram diagram.	Paper V,VI &VII	Credits earned
CO 2	Complete elaboration of chemistry of s and p block	GE -3A	from MSE (Mid
	elements.		Semester
CO 3	Fundamentals on the types of nucleophilic		Examinations or
	substitution reactions, benzyne mechanism.		CIA-Continuous
CO 4	Explain with examples of preparation and		Internal
	properties of alcohol, phenol, ether, carbonyl		Assessments) & ESE
	compounds and acids.		(End Semester
CO 5	Students should be able to understand the concept		Examinations)
	of phase, component in different solvent systems.		
CO 6	Explain with relevant examples the concept of		
	kinetics in complex reactions, order and		
	molecularity of a reaction and the different factors		
	affects rate af a chemical reactions.		

SEMESTER IV

	COURSE OUTCOME	PAPERS	LO
			&ATTAINMENT
			Level
CO 1	Have a clear idea coordination chemistry, ligands, CFT	Core	SGPA on basis of
	and VBT.	Course	Credits earned
		Paper	from MSE (Mid
CO 2	Students should be able to know the general	VIII <i>,</i> IX &	Semester
	characteristic properties of transition elements.	Х	Examinations or
CO 3	Study and acquire knowledge in the chemistry of Ti, V,	GE -3A	CIA-Continuous
	Cr, Mn, Fe and Co		Internal
CO 4	Develope comprehensive ideas on nitrogen containing		Assessments) &
	functional groups, diazonium salts, alkaloids and		ESE (End
	heterocyclic compounds.		Semester
CO 5	Students can briefly understand the concept of		Examinations)
	conductance and its related theories.		
CO 6	In details the concept of electrochemistry, laws of		
	electrolysis,Concentration cells with and without		
	transference, liquid junction potential; determination of		
	activity coefficients and transference numbers.		

SEMESTER V

	COURSE OUTCOME	PAPERS	LO(Learning Outcome)& ATTAINMENT Level
CO 1	State and explain details on uv, IR , NMR and molecular	Core	SGPA on basis
	spectroscopy along with its applications In different fields.	Course	of Credits
CO 2	Detailed concept of Chemical bonding, valence bond and	Paper	earned from
	molecular orbital approaches, LCAO- MO treatment of H +.	XI & XII	MSE (Mid
	Bonding and antibonding orbitals.	DSE-I	Semester
CO 3	Describe in detailsabout carbohydrates, configuration of glucose	&11	Examinations
	and fructose, epimers and anomers, mutarotation.		or CIA-
CO 4	Details on Quantum mechanical operators, Postulates of		Continuous
	quantum mechanics, Schrödinger equation and its application to		Internal
	particle in one-dimensional box and three-dimensional boxes,		Assessments)
	Qualitative treatment of simple harmonic oscillator .		& ESE (End
CO 5	Complete study on the Properties, manufacture and classification		Semester
	of glass, ceramics, cement. Understand the concept of fertilizers,		Examinations)
	alloys.		
CO 6	While a student is able to know the basic principles ,		
	instrumentation and applications of Flame Atomic Absorption		
	Spectrometry, thermo-gravimetry (TG) and Separation techniques		

SEMESTER VI

	COURSE OUTCOME	PAPERS	Learning Outcome& ATTAINMENT Level
CO 1 CO 2	Define and describethe Concepts of Definition and classification of organometallic compounds on the basis of bond type, Concept of hapticity, 18 electron rule, Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT. Preparation and structure, evidences of synergic effect in metal carbonyls. Study and analyze the Catalysis by Organometallic Compounds - and their mechanism: 1. Alkene hydrogenation (Wilkinson's Catalyst)2. Hydroformylation (Co salts) 3. Wacker Process 4. Synthetic gasoline (Fischer Tropsch reaction)	Core Course Paper XIII & XIV DSE-III & DSE IV Project work	e SGPA on basis of Credits earned from MSE (Mid Semester Examinations or CIA-Continuous Internal Assessments) & ESE (End Semester Examinations)
CO 3	Thorough study of nature, types and biosynthesis of Lipids, the process of Biotic and abiotic Nitrogen assimilation and metabolism involved in Amino acid biosynthesis		attained at the Final Semester is calculated taking all SGPAs of all
CO 4	Define concepts Thermodynamic & kinetic aspects and reaction mechanism of metal complexes , factors affecting stability.,Substitution reaction of square planar and octahedral complexes, Trans effect and its applications, theories of trans-effect (electrostatic polarization and Static π-Bonding Theory.		semester and grading is done to award 1 st /2 nd Class Honors with Distinction.
CO 5	Study the concept of Industrial Gases and Inorganic Chemicals, Greenhouse effect and global warming, Ozone depletion by oxides of nitrogen, Hydrological cycle, Water treatment and purification (reverse osmosis, ion exchange). Nuclear fusion/fission,. Nuclear Pollution		
CO 6	Basic concepts of research, general laboratory practices, Data collection and documentation, scientific writing and its presentation through oral, Power Point and Poster methods and how to conceptualize, design and execute a science Project. On completion of all six semesters, a Chemistry Graduate should be able to express, articulate and write scientifically on any of the chapters/Topics mentioned above		